Euler’s theorem:
a , n aφ(n)≡1(mod n) φ(n) is the Euler function.(1~n) Andn
X1,X2 …… Xφn is1~nandnaX1,aX2 …… aXφn
naX1≡aX2(mod n) n |( aX1 – aX2 )a,n(X1 – X2)< nn( aX1 – aX2 )aX1≡aX2(mod n).” Induction: for arbitrary andnXi φn Xi mod n(i=1~φn) φn different remainder, and all modules are natural.(0~n-1)。
aXi(mod n)na withnXi is(1~n) withna*XinaXi andngcd(aXi,n)==1gcd(aXi,n)== gcd(n,aXi%n)== 1
aX1(mod n),aX2(mod n) …… aXφn(mod n)1~n withn mutual
{ aX1(mod n),aX2(mod n) …… aXφn(mod n)}{ X1,X2 …… Xφn }
aX1(mod n)* aX2(mod n)* …… * aXφn(mod n)= X1 * X2 * …… * Xφn
aX1 * aX2 * …… * aXφn≡ X1 * X2 * …… * Xφn (mod n)(aφn -1)X1 * X2 * …… * Xφn ≡ 0 (mod n)
X1 * X2 * …… * Xφn(aφn -1)| n“.aφn≡1(mod n).” The Euler theorem is proved.
for prime numberspap≡a(mod p)
> becausea ≡ a(mod p)ap-1 mod p == 1p
n-1″, so according to Euler’s theorem: if a and N are a, the coprime isp-1 mod p == 1establish
Posted on Categories default