Euler Fermat little theorem theorem (proof and deduction)

Euler’s theorem

 a , n   aφ(n)≡1(mod n)   φ(n)  is the Euler function.(1~n) Andn 

X1,X2 …… Xφn is1~nandnaX1,aX2 …… aXφn

  naX1≡aX2(mod n) n |( aX1 – aXa,n(X1 – X2)< nn( aX1 – aXaX1≡aX2(mod n).” Induction: for arbitrary andnXi  φn Xmod n(i=1~φn) φn different remainder, and all modules are natural.(0~n-1)

 aXi(mod n)na withnXi is(1~n) withna*XinaXi andngcd(aXi,n)==1gcd(aXi,n)== gcd(n,aXi%n)== 1

 

  aX1(mod n),aX2(mod n) …… aXφn(mod n)1~n withn mutual

{ aX1(mod n),aX2(mod n) …… aXφn(mod n)}{ X1,X2 …… Xφn }

aX1(mod n)* aX2(mod n)*  …… * aXφn(mod n)= X1 * X2 * …… * Xφn   

    aX1 * aX2 *  …… * aXφn≡ X* X2 * …… * Xφn  (mod n)(aφn -1)X* X2 * …… * Xφn ≡ 0 (mod n)

  X* X2 * …… * Xφn(aφn -1)| n“.aφn≡1(mod n).” The Euler theorem is proved.

 

   for prime numberspap≡a(mod p)

   > becausea ≡ a(mod p)ap-1 mod p == 1p

n-1″, so according to Euler’s theorem: if a and N are a, the coprime isp-1 mod p == 1establish

 

Posted on Categories default

Leave a Reply

Your email address will not be published. Required fields are marked *